Add like
Add dislike
Add to saved papers

Synthesis and characterization of chitosan/carbon quantum dots/Fe 2 O 3 nanocomposite comprising curcumin for targeted drug delivery in breast cancer therapy.

Curcumin, a natural compound with promising anti-cancerous features, suffers from a number of shortcomings such as low chemical stability, bioavailability, and solubility, which impedes its application as an alternative for conventional cancer therapy. In this study, curcumin comprising Fe2 O3 /Chitosan/CQDs was fabricated through double emulsion method (W/O/W) for the first time to exploit its anticancer features while alleviating its limitation, making this nanocomposite promising in targeted drug delivery. Chitosan, a hydrophilic biopolymer, has incorporated to constitute an adhesive pH-sensitive matrix that can trap the hydrophobic drug resulting in controlled drug release in cancerous environment. Carbon quantum dots render luminescence and water solubility properties, which is favorable for tracing drug release and bio imaging along with enhancement of biocompatibility. Fe2 O3 can improve chemical stability and bioavailability in addition to anti-cancerous property. XRD and FTIR analysis confirmed the physical interaction between the drug and fabricated nano composite in addition to chemical bonding between the prepared nano composite. Matrix and spherical structure of the formed drug is corroborated by FESEM analysis. DLS analysis' results determine the mean size of the nano composite at about 227.2 nm and zeta potential result is indicative of perfect stability of the fabricated drug. Various kinetic models for drug release were fitted to experimental data in order to investigate the drug release in which Korsmeyer-Peppas' model was the predominant release system in cancerous environment. In vitro studies through flow cytometry and MTT assay exerted noticeable cytotoxicity effect on MCF-7 cell lines. It can be deduced from these results that curcumin encapsulated with CS/CQDs/Fe2 O3 nanocomposites is an excellent alternative for targeted drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app