Add like
Add dislike
Add to saved papers

Schisandrin A regulates the Nrf2 signaling pathway and inhibits NLRP3 inflammasome activation to interfere with pyroptosis in a mouse model of COPD.

Chronic obstructive pulmonary disease (COPD) is a serious chronic lung disease. Schisandrin A (SchA) is one of the most important active ingredients in Schisandra chinensis and has been used to treat various lung diseases in several countries. Here, we studied the pharmacological effect of SchA on airway inflammation induced by cigarette smoke (CS) and explored the therapeutic mechanism of SchA in COPD model mice. Our results showed that SchA treatment significantly improved the lung function of CS-induced COPD model mice and reduced the recruitment of leukocytes and hypersecretion of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α) in bronchoalveolar lavage fluid (BALF). H&E staining showed that SchA treatment could effectively reduce emphysema, immune cell infiltration and airway wall destruction. In addition, we found that SchA treatment can stimulate the expression of heme oxygenase-1 (HO-1) through the nuclear factor-erythroid 2-related factor (Nrf2) pathway, significantly reduce oxidative stress, increase catalase (CAT) and superoxide dismutase (SOD) levels, and suppress the level of malondialdehyde (MDA) in COPD model mice. Moreover, SchA treatment suppressed the generation of the NLRP3/ASC/Caspase1 inflammasome complex to inhibit the inflammatory response caused by IL-1β and IL-18 and pyroptosis caused by GSDMD. In conclusion, our study shows that SchA treatment can inhibit the production of ROS and the activation of the NLRP3 inflammasome by upregulating Nrf-2, thereby producing anti-inflammatory effects and reducing lung injury in COPD model mice. More importantly, SchA exhibited similar anti-inflammatory effects to dexamethasone in COPD model mice, and we did not observe substantial side effects of SchA treatment. The high safety of SchA makes it a potential candidate drug for the treatment of COPD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app