Add like
Add dislike
Add to saved papers

Regenerative Engineering of a Biphasic Patient-Fitted Temporomandibular Joint Condylar Prosthesis.

Regenerative medicine approaches to restore the mandibular condyle of the temporomandibular joint (TMJ) may fill an unmet patient need. Here, a method to implant an acellular regenerative TMJ prosthesis was developed for orthotopic implantation in a pilot goat study. The scaffold incorporated a porous, polycaprolactone-hydroxyapatite (PCL-HAp, 20wt% HAp) 3D-printed condyle with a cartilage-matrix-containing hydrogel. A series of material characterizations were used to determine the structure, fluid transport, and mechanical properties of 3D-printed PCL-HAp. To promote marrow uptake for cell seeding, a scaffold pore size of 152±68 μm resulted in a whole blood transport initial velocity of 3.7±1.2 mm·s-1 transported to the full 1 cm height. The Young's modulus of PCL was increased by 67% with the addition of HAp, resulting in a stiffness of 269±20 MPa for etched PCL-HAp. In addition, the bending modulus increased by 2.06-fold with the addition of HAp to 470 MPa for PCL-HAp. The prosthesis design with an integrated hydrogel was compared with unoperated contralateral control and no-hydrogel group in a goat model for 6 months. A guide was used to make the condylectomy cut, and the TMJ disc was preserved. MicroCT assessment of bone suggested variable tissue responses with some regions of bone growth and loss, though more loss may have been exhibited by the hydrogel group than the no-hydrogel group. A benchtop load transmission test suggested that the prosthesis was not shielding load to the underlying bone. Although variable, signs of neocartilage formation were exhibited by Alcian blue and collagen II staining on the anterior, functional surface of the condyle. Overall, the current study demonstrated signs of functional TMJ restoration with an acellular prosthesis. There were apparent limitations to continuous, reproducible bone formation, and stratified zonal cartilage regeneration. Future work may refine the prosthesis design for a regenerative TMJ prosthesis amenable to clinical translation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app