Add like
Add dislike
Add to saved papers

ACE Inhibitors Improve Skeletal Muscle by Preserving Neuromuscular Junctions in Patients with Alzheimer's Disease.

BACKGROUND: Hypertension and skeletal muscle decline are common findings in patients with Alzheimer's disease (AD). Angiotensin-converting enzyme (ACE) inhibitors preserve skeletal muscle and physical capacity; however, the driving mechanisms are poorly understood.

OBJECTIVE: We investigated the effects of ACE inhibitors on the neuromuscular junction (NMJ) with relevance to skeletal muscle and physical capacity in AD patients and age-matched controls.

METHODS: We evaluated controls (n = 59) and three groups of AD patients, including normotensive (n = 51) and patients with hypertension taking ACE inhibitors (n = 53) or other anti-hypertensive medications (n = 49) at baseline and one year later. We measure plasma c-terminal agrin fragment-22 (CAF22) as a marker of NMJ degradation, handgrip strength (HGS), and Short Physical Performance Battery (SPPB) as markers of physical capacity.

RESULTS: At baseline AD patients demonstrated lower HGS and SPPB scores and higher CAF22 levels than controls, irrespective of the hypertension status (all p < 0.05). The use of ACE inhibitors was associated with higher HGS and relative maintenance of SPPB scores, gait speed, and plasma CAF22 levels. Conversely, other anti-hypertensive medications were associated with an unaltered HGS, reduced SPPB scores and elevated plasma CAF22 levels (both p < 0.05). We also found dynamic associations of CAF22 with HGS, gait speed, and SPPB in AD patients taking ACE inhibitors (all p < 0.05). These changes were associated with reduced oxidative stress in AD patients taking ACE inhibitors (p < 0.05).

CONCLUSION: Altogether, ACE inhibitors are associated with higher HGS, preserved physical capacity, and the prevention of NMJ degradation in hypertensive AD patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app