Journal Article
Review
Add like
Add dislike
Add to saved papers

Highly Ordered Small Molecule Organic Semiconductor Thin-Films Enabling Complex, High-Performance Multi-Junction Devices.

Chemical Reviews 2023 June 15
Organic semiconductors have opened up many new electronic applications, enabled by properties like flexibility, low-cost manufacturing, and biocompatibility, as well as improved ecological sustainability due to low energy use during manufacturing. Most current devices are made of highly disordered thin-films, leading to poor transport properties and, ultimately, reduced device performance as well. Here, we discuss techniques to prepare highly ordered thin-films of organic semiconductors to realize fast and highly efficient devices as well as novel device types. We discuss the various methods that can be implemented to achieve such highly ordered layers compatible with standard semiconductor manufacturing processes and suitable for complex devices. A special focus is put on approaches utilizing thermal treatment of amorphous layers of small molecules to create crystalline thin-films. This technique has first been demonstrated for rubrene─an organic semiconductor with excellent transport properties─and extended to some other molecular structures. We discuss recent experiments that show that these highly ordered layers show excellent lateral and vertical mobilities and can be electrically doped to achieve high n- and p-type conductivities. With these achievements, it is possible to integrate these highly ordered layers into specialized devices, such as high-frequency diodes or completely new device principles for organics, e.g., bipolar transistors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app