Add like
Add dislike
Add to saved papers

Electrophysiological and histological correlations of optic neuritis in the Dark Agouti rat model of experimental autoimmune encephalomyelitis.

Neuroscience 2023 June 7
Experimental autoimmune encephalomyelitis (EAE) is an animal model of Inflammatory central nervous system (CNS) disease. Dark agouti (DA) rats immunized with full-length myelin oligodendrocyte glycoprotein (MOG1-125 ) typically develop a relapsing-remitting EAE form characterized by predominant demyelinating involvement of the spinal cord and optic nerve. Visually evoked potentials (VEP) are a useful objective tool to assess the optic nerve function and monitor electrophysiological changes in optic neuritis (ON). The current study aimed to assess the VEP changes in MOG-EAE DA rats using a minimally invasive recording device and to correlate them with histological findings. Twelve MOG-EAE DA rats and four controls underwent VEP recording at day 0, 7, 14, 21, and 28 post-EAE induction. Tissue samples were obtained on days 14, 21, and 28 from two EAE rats and one control. The median VEP latencies were significantly higher on days 14, 21, and 28 compared to baseline, with maximal latencies observed on day 21. The histological analyses on day 14 demonstrated inflammation with largely preserved myelin and axonal structures. Inflammation and demyelination with largely preserved axons were evident on days 21 and 28, which correlated with prolonged VEP latencies. These findings suggest that VEPs may be a reliable biomarker reflecting the optic nerve involvement in EAE. Moreover, the use of a minimally invasive device enables observation of VEP changes over time in MOG-EAE DA rats. Our findings may have important implications for testing the potential neuroprotective and regenerative effects of new therapies for CNS demyelinating diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app