Add like
Add dislike
Add to saved papers

AgAuS Quantum Dots as a Highly Efficient Near-Infrared Electrochemiluminescence Emitter for the Ultrasensitive Detection of MicroRNA.

Herein, the novel alloyed silver gold sulfur quantum dots (AgAuS QDs) with highly efficient near-infrared (NIR) electrochemiluminescence (ECL) emission at 707 nm were successfully prepared to construct a biosensing platform for ultrasensitive detection of microRNA-222 (miRNA-222). Interestingly, AgAuS QDs revealed excellent ECL efficiency (34.91%) compared to that of Ag2 S QDs (10.30%), versus the standard [Ru(bpy)3 ]2+ /S2 O8 2- system, which benefited from the advantages of abundant surface defects and narrow bandgaps by Au incorporation. Additionally, an improved localized catalytic hairpin self-assembly (L-CHA) system was developed to display an increased reaction speed by improving the local concentration of DNA strands, which addressed the obstacles of time-consuming traditional CHA systems. As a proof of concept, based on AgAuS QDs as an ECL emitter and improved localized CHA systems as a signal amplification strategy, a "signal on-off" ECL biosensor was developed to exhibit a superior reaction rate and excellent sensitivity with a detection limit of 10.5 aM for the target miRNA-222, which was further employed for the analysis of miRNA-222 from cancer cell (MHCC-97L) lysate. This work advances the exploration of highly efficient NIR ECL emitters to construct an ultrasensitive biosensor for the detection of biomolecules in disease diagnosis and NIR biological imaging.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app