Add like
Add dislike
Add to saved papers

Potential selection and maintenance of manure-originated multi-drug resistant plasmids at sub-clinical concentrations for tetracycline family antibiotics.

The goal of this study was to (a) determine the minimum selection concentrations of tetracycline family antibiotics necessary to maintain plasmids carrying tetracycline-resistant genes and (b) correlate these results to environmental hotspot concentrations reported in previous studies. This study used two plasmids (pT295A and pT413A) originating from dairy manure in a surrogate Escherichia coli host CV601. The minimum selection concentrations of antibiotics tested in nutrient-rich medium were determined as follows: 0.1 mg/L for oxytetracycline, 0.45 mg/L for chlortetracycline and 0.13-0.25 mg/L for tetracycline. Mixing oxytetracycline and chlortetracycline had minimum selection concentration values increased 2-fold compared to those in single antibiotic tests. Minimum selection concentrations found in this study were lower than reported environmental hotspot concentrations, suggesting that tetracycline family antibiotics were likely to be the driver for the selection and maintenance of these plasmids. Relatively high plasmid loss rates (> 90%) were observed when culturing a strain carrying a tetracycline-resistant plasmid in antibiotic-free nutrient-rich and nutrient-defined media. Overall, results suggested that these plasmids can be maintained at concentrations environmentally relevant in wastewater treatment plants, sewage, manure and manured soil; however, they are unstable and easily lost in the absence of antibiotics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app