Add like
Add dislike
Add to saved papers

Inhibiting eukaryotic initiation factor 5A (eIF5A) hypusination attenuated activation of the SIK2 (salt-inducible kinase 2)-p4E-BP1 pathway involved in ovarian cancer cell proliferation and migration.

BACKGROUND: Eukaryotic initiation factor 5A hypusine (eIF5AHyp ) stimulates the translation of proline repeat motifs. Salt inducible kinase 2 (SIK2) containing a proline repeat motif is overexpressed in ovarian cancers, in which it promotes cell proliferation, migration, and invasion.

METHODS AND RESULTS: Western blotting and dual luciferase analyses showed that depletion of eIF5AHyp by GC7 or eIF5A-targeting siRNA downregulated SIK2 level and decreased luciferase activity in cells transfected with a luciferase-based reporter construct containing consecutive proline residues, whereas the activity of the mutant control reporter construct (replacing P825L, P828H, and P831Q) did not change. According to the MTT assay, GC7, which has a potential antiproliferative effect, reduced the viability of several ovarian cancer cell lines by 20-35% at high concentrations (ES2 > CAOV-3 > OVCAR-3 > TOV-112D) but not at low concentrations. In a pull-down assay, we identified eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and 4E-BP1 (p4E-BP1) phosphorylated at Ser 65 as downstream binding partners of SIK2, and we validated that the level of p4E-BP1(Ser 65) was downregulated by SIK2-targeting siRNA. Conversely, in ES2 cells overexpressing SIK2, the p4E-BP1(Ser 65) level was increased but decreased in the presence of GC7 or eIF5A-targeting siRNA. Finally, the migration, clonogenicity, and viability of ES2 ovarian cancer cells were reduced by GC7 treatment as well as by siRNA for eIF5A gene silencing and siRNA for SIK2 and 4E-BP1 gene silencing. Conversely, those activities were increased in cells overexpressing SIK2 or 4E-BP1 and decreased again in the presence of GC7.

CONCLUSION: The depletion of eIF5AHyp by GC7 or eIF5A-targeting siRNA attenuated activation of the SIK2-p4EBP1 pathway. In that way, eIF5AHyp depletion reduces the migration, clonogenicity, and viability of ES2 ovarian cancer cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app