Add like
Add dislike
Add to saved papers

Improving radiation dosimetry with an automated micronucleus scoring system: correction of automated scoring errors.

Radiation dose estimations performed by automated counting of micronuclei (MN) have been studied for their utility for triage following large-scale radiological incidents; although speed is essential, it also is essential to estimate radiation doses as accurately as possible for long-term epidemiological follow-up. Our goal in this study was to evaluate and improve the performance of automated MN counting for biodosimetry using the cytokinesis-block micronucleus (CBMN) assay. We measured false detection rates and used them to improve the accuracy of dosimetry. The average false-positive rate for binucleated cells was 1.14%; average false-positive and -negative MN rates were 1.03% and 3.50%, respectively. Detection errors seemed to be correlated with radiation dose. Correction of errors by visual inspection of images used for automated counting, called the semi-automated and manual scoring method, increased accuracy of dose estimation. Our findings suggest that dose assessment of the automated MN scoring system can be improved by subsequent error correction, which could be useful for performing biodosimetry on large numbers of people rapidly, accurately, and efficiently.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app