Add like
Add dislike
Add to saved papers

CD1d-dependent natural killer T-cells inactivation aggravates sepsis-induced myocardial injury via T lymphocytes infiltration and IL-6 production in mice.

Myocardial edema mediated by endothelial dysfunction plays an important role in sepsis-induced cardiomyopathy (SIC); however, its mechanism is unclear. The current study aimed to provide evidence on the cardioprotection of CD1d-dependent natural killer T (NKT) cells and clarify the possible mechanism in a mouse model of sepsis. Wild-type (WT) and CD1d-dependent NKT-cells inactivation (CD1dko) mice were subjected to sepsis induced by intraperitoneal injection of lipopolysaccharide (LPS). The NKT-cells number and CD1d expression were both increased in the hearts and blood of WT mice after LPS treatment. Compared with WT mice, CD1dko mice exhibited remarkably accelerated LPS-induced mortality, cardiac dysfunction, myocardial injury, endothelial apoptosis, microvascular damage, microvascular permeability and cardiac edema. Mechanistically, CD1d deficiency further increased LPS-induced accumulation of T lymphocytes in the myocardium and upregulation of IL-6 protein levels. Administration of an IL-6 neutralizing antibody to CD1dko mice improved cardiac dysfunction, myocardial injury and edema induced by LPS. Our study identified that CD1d-dependent NKT-cells inactivation exacerbated SIC via T lymphocytes infiltration and IL-6 production. Hence, activation of CD1d-dependent NKT cells may be a potential candidate strategy for SIC treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app