Add like
Add dislike
Add to saved papers

Agomelatine's antiglycoxidative action- In vitro and in silico research and systematic literature review.

INTRODUCTION: Agomelatine is an atypical antidepressant drug enhancing norepinephrine and dopamine liberation; nevertheless, additional mechanisms are considered for the drug's pharmacological action. Since protein glycoxidation plays a crucial role in depression pathogenesis, agomelatine's impact on carbonyl/oxidative stress was the research purpose.

METHODS: Reactive oxygen species scavenging (hydroxyl radical, hydrogen peroxide, and nitrogen oxide) and antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion chelating assays) of agomelatine were marked. Agomelatine's antiglycoxidation properties were assayed in sugars (glucose, fructose, and galactose) and aldehydes- (glyoxal and methylglyoxal) glycated bovine serum albumin (BSA). Aminoguanidine and α-lipoic acid were used as standard glycation/oxidation inhibitors.

RESULTS: Agomelatine did not show meaningful scavenging/antioxidant capacity vs. standards. Sugars/aldehydes increased glycation (↑kynurenine, ↑N-formylkynurenine, ↑dityrosine, ↑advanced glycation end products, and ↑β-amyloid) and oxidation (↑protein carbonyls and ↑advanced oxidation protein products) parameters in addition to BSA. Standards restored BSA baselines of glycation and oxidation markers, unlike agomelatine which sometimes even intensifies glycation above BSA + glycators levels. Molecular docking analysis of agomelatine in BSA demonstrated its very weak binding affinity.

DISCUSSION: Agomelatine's very low affinity to the BSA could proclaim non-specific bonding and simplify attachment of glycation factors. Thereby, the drug may stimulate brain adaptation to carbonyl/oxidative stress as the systematic review indicates. Moreover, the drug's active metabolites could exert an antiglycoxidative effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app