Add like
Add dislike
Add to saved papers

In vitro effects of photobiomodulation on cell migration and gene expression of ALP, COL-1, RUNX-2, and osterix in cementoblasts.

The aim of this study was to evaluate the effects of photobiomodulation (PBM) on cell migration and alkaline phosphatase (ALP), type I collagen (Col-1), runt-related transcription factor 2 (RUNX-2), and Osterix (OSX) gene expression in a cementoblast culture (OCCM-30), in a microenvironment mimicking an injury on the cementoblast layer, such as it occurs during root resorption. For this, OCCM-30 cells were cultured in 6-well plates and the following parameters were assayed: (1) migration by scratch assay and ALP, Col-1, Runx2, and Osx by real-time PCR. PBM was performed in two protocols using a LED device emitting light at 660 nm (± 30 nm). OCCM-30 cementoblasts were grown and divided into four groups: (1) negative control; (2) positive control (scratch); (3) scratch + PBM with a total energy of 36 J and energy density 1.6 J/cm2 ; and (4) scratch + PBM with a total energy of 72 J and energy density of 3.2 J/cm2 . Data were statistically analyzed, with the level of significance set at 5%. Cementoblasts migrated from the edge of the scratch toward the center, and the wound closed after 24 h, with the PBM3.2J/cm2 group showing the higher cell migration compared with the other groups at 2 h, 6 h, 8 h, and 13 h (p < 0.05). The control and PBM1.6J/cm2 groups showed similar levels of cell migration, with no significant differences (p > 0.05). PBM3.2J/cm2 group exhibited greater ALP, Col-1, OSX, and RUNX2 in comparison with the other experimental groups (p < 0.05). Similar levels of all genes evaluated were observed between the PBM1.6J/cm2 group and the positive control group (p > 0.05). In conclusion, our findings support the effectiveness of photobiomodulation on cementoblast migration and gene expression, which may contribute to the formation of a new cementum layer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app