Journal Article
Review
Add like
Add dislike
Add to saved papers

Sphingosine-1-phosphate and its receptors in vascular endothelial and lymphatic barrier function.

The vascular and lymphatic systems are both comprised of a series of structurally distinct vessels lined with an inner layer of endothelial cells that function to provide a semi-permeable barrier to blood and lymph. Regulation of the endothelial barrier is critical for maintaining vascular and lymphatic barrier homeostasis, and its disruption is involved in accelerating various diseases, including systemic inflammation, acute organ failure, and cancer metastasis. One of the regulators of endothelial barrier function and integrity is sphingosine-1-phosphate (S1P), a bioactive sphingolipid metabolite secreted into the blood by erythrocytes, platelets, and endothelial cells and into the lymph by lymph endothelial cells. Binding of S1P to its G protein-coupled receptors, known as S1PR1-5, regulates its pleiotropic functions. This review outlines the structural and functional differences between vascular and lymphatic endothelium and describes current understanding of the importance of S1P/S1PR signaling in regulation of barrier functions. Most studies thus far have been primarily focused on the role of the S1P/S1PR1 axis in vasculature and have been summarized in several excellent reviews and thus, we will only discuss new perspectives on the molecular mechanisms of action of S1P and its receptors. Much less is known about the responses of the lymphatic endothelium to S1P and the functions of S1PRs in lymph endothelial cells and this is a major focus of this review. We also discuss current knowledge related to signaling pathways and factors regulated by the S1P/S1PR axis that control lymphatic endothelial cell junctional integrity. Gaps and limitations in current knowledge are highlighted together with the need to further understand the role of S1P receptors in the lymphatic system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app