Add like
Add dislike
Add to saved papers

Biomaterials-based immunomodulation enhances survival of murine vascularized composite allografts.

Vascularized composite allotransplantation (VCA) is a restorative option for patients suffering from severe tissue defects not amenable to conventional reconstruction. However, the toxicities associated with life-long multidrug immunosuppression to enable allograft survival and induce immune tolerance largely limit the broader application of VCA. Here, we investigate the potential of targeted immunomodulation using CTLA4-Ig combined with a biological porcine-derived extracellular matrix (ECM) scaffold that elicits a pro-regenerative Th2 response to promote allograft survival and regulate the inflammatory microenvironment in a stringent mouse orthotopic hind limb transplantation model (BALB/c to C57BL/6). The median allograft survival time (MST) increased significantly from 15.0 to 24.5 days ( P = 0.0037; Mantel-Cox test) after adding ECM to the CTLA4-Ig regimen. Characterization of the immune infiltration shows a pro-regenerative phenotype prevails over those associated with inflammation and rejection including macrophages (F4/80hi+ CD206hi+ MHCIIlow ), eosinophils (F4/80low Siglec-F+ ), and T helper 2 (Th2) T cells (CD4+ IL-4+ ). This was accompanied by an increased expression of genes associated with a Type 2 polarized immune state such as Il4 , Ccl24 , Arg1 and Ym1 within the graft. Furthermore, when ECM was applied along with a clinically relevant combination of CTLA4-Ig and Rapamycin, allograft survival was prolonged from 33.0 to 72.5 days ( P = 0.0067; Mantel-Cox test). These studies implicate the clinical exploration of combined regimens involving local application of pro-regenerative, immunomodulatory biomaterials in surgical wound sites with targeted co-stimulatory blockade to reduce adverse effects of immunosuppression and enhance graft survival in VCA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app