Add like
Add dislike
Add to saved papers

Individual Muscle Force Differences During Loaded Hexbar Jumps: A Statistical Parametric Mapping Analysis.

Knowledge of individual muscle force during strength and conditioning exercises provides deeper understanding of how specific training decisions relate to desired training outcomes. The purpose of this study was to estimate individual muscle forces during hexbar jumps with 0%, 20%, 40%, and 60% of the hexbar deadlift 1-repetition maximum utilizing in vivo motion capture and computational modeling techniques of male participants. Muscle forces for the gluteus maximus, biceps femoris, rectus femoris, vastus intermedius, gastrocnemius, and soleus were estimated via static optimization. Changes in muscle forces over the concentric phase were analyzed across loading conditions using statistical parametric mapping, impulse, and peak values. Conclusions about the effects of load differ between the three analysis methods; therefore, careful selection of analysis method is essential. Peaks may be inadequate in assessing differences in muscle force during dynamic movements. If SPM, assessing point-by-point differences, is combined with impulse, where time of force application is considered, both timepoint and overall loading can be analyzed. The response of individual muscle forces to increases in external load, as assessed by impulse and SPM, includes increased total muscle output, proportionally highest at 20%1RM, and increased absolute force for the vasti and plantarflexors during the concentric phase of hexbar jumps.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app