Add like
Add dislike
Add to saved papers

Substance P promotes epidural fibrosis via induction of type 2 macrophages.

In response to spinal surgery, neurons secrete a large amount of substance P into the epidural area. Substance P is involved in macrophage differentiation and fibrotic disease. However, the specific roles and mechanisms of substance P in epidural fibrosis remain unclear. In this study, we established a mouse model of L1-L3 laminectomy and found that dorsal root ganglion neurons and the macrophages infiltrating into the wound area released sphingolipids. In vitro experiments revealed that type 1 macrophages secreted substance P, which promoted differentiation of type 1 macrophages towards a type 2 phenotype. High-throughput mRNA-seq analysis revealed that the sphingolipid metabolic pathway may be involved in the regulation of type 2 macrophages by substance P. Specifically, sphingomyelin synthase 2, a component of the sphingolipid metabolic pathway, promoted M2 differentiation in substance P-treated macrophages, while treating the macrophages with LY93, a sphingomyelin synthase 2 inhibitor, suppressed M2 differentiation. In addition, substance P promoted the formation of neutrophil extracellular traps, which further boosted M2 differentiation. Blocking substance P with the neurokinin receptor 1 inhibitor RP67580 decreased the number of M2 macrophages in the wound area after spinal surgery and alleviated epidural fibrosis, as evidenced by decreased fibronectin, α-smooth muscle actin, and collagen I in the scar tissue. These results demonstrated that substance P promotes M2 macrophage differentiation in epidural fibrosis via sphingomyelin synthase 2 and neutrophil extracellular traps. These findings provide a novel strategy for the treatment of epidural fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app