Add like
Add dislike
Add to saved papers

Diffusion Tensor Imaging to Predict Neurodevelopmental Impairment in Infants after Hypoxic-Ischemic Injury.

OBJECTIVE:  Magnetic resonance imaging (MRI) is the standard of care for evaluation of brain injury after hypoxic-ischemic encephalopathy (HIE) in term newborns. This study utilizes diffusion tensor imaging (DTI) to (1) identify infants at highest risk of development of cerebral palsy (CP) following HIE and to (2) identify regions of the brain critical to normal fidgety general movements (GMs) at 3 to 4 months of postterm. Absence of these normal, physiological movements is highly predictive of CP.

STUDY DESIGN:  Term infants treated with hypothermia for HIE from January 2017 to December 2021 were consented for participation and had brain MRI with DTI after rewarming. The Prechtl's General Movements Assessment was performed at 12 to 16 weeks of age. Structural MRIs were reviewed for abnormalities, and DTI data were processed with the FMRIB Software Library. Infants underwent the Bayley Scales of Infant and Toddler Development III test at 24 months.

RESULTS:  Forty-five infant families were consented; three infants died prior to MRI and were excluded, and a fourth infant was excluded due to diagnosis of a neuromuscular disorder. Twenty-one infants were excluded due to major movement artifact on diffusion images. Ultimately, 17 infants with normal fidgety GMs were compared with 3 infants with absent fidgety GMs with similar maternal and infant characteristics. Infants with absent fidgety GMs had decreased fractional anisotropy of several important white matter tracts, including the posterior limb of the internal capsule, optic radiations, and corpus callosum ( p  < 0.05). All three infants with absent fidgety GMs and two with normal GMs went on to be diagnosed with CP.

CONCLUSION:  This study identifies white matter tracts of the brain critical to development of normal fidgety GMs in infants at 3 to 4 months of postterm using advanced MRI techniques. These findings identify those at highest risk for CP among infants with moderate/severe HIE prior to hospital discharge.

KEY POINTS: · HIE has devastating impacts on families and infants.. · Diffusion MRI identifies infants at highest risk for developing neurodevelopmental impairment.. · Normal general movements of infancy are generated by key white matter tracts..

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app