Add like
Add dislike
Add to saved papers

Altered Intracellular Signaling Associated with Dopamine D2 Receptor in the Prefrontal Cortex in Wistar Kyoto Rats.

Wistar-Kyoto rats (WKY), compared to Wistar rats, are a well-validated animal model for drug-resistant depression. Thanks to this, they can provide information on the potential mechanisms of treatment-resistant depression. Since deep brain stimulation in the prefrontal cortex has been shown to produce rapid antidepressant effects in WKY rats, we focused our study on the prefrontal cortex. Using quantitative autoradiography, we observed a decrease in the binding of [3 H] methylspiperone to the dopamine D2 receptor, specifically in that brain region-but not in the striatum, nor the nucleus accumbens-in WKY rats. Further, we focused our studies on the expression level of several components associated with canonical (G proteins), as well as non-canonical, D2-receptor-associated intracellular pathways (e.g., βarrestin2, glycogen synthase kinase 3 beta- Gsk-3β , and β-catenin). As a result, we observed an increase in the expression of mRNA encoding the regulator of G protein signaling 2-RGS2 protein, which is responsible, among other things, for internalizing the D2 dopamine receptor. The increase in RGS2 expression may therefore account for the decreased binding of the radioligand to the D2 receptor. In addition, WKY rats are characterized by the altered signaling of genes associated with the dopamine D2 receptor and the βarrestin2/AKT/Gsk-3β/β-catenin pathway, which may account for certain behavioral traits of this strain and for the treatment-resistant phenotype.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app