Add like
Add dislike
Add to saved papers

Longitudinal biomarkers and kidney disease progression after acute kidney injury.

JCI Insight 2023 March 24
BACKGROUND: Longitudinal investigations of murine acute kidney injury (AKI) suggest that injury and inflammation may persist long after the initial insult. However, the evolution of these processes and their prognostic values are unknown in patients with AKI.

METHODS: In a prospective cohort of 656 participants hospitalized with AKI, we measured seven urine and two plasma biomarkers of kidney injury, inflammation, and tubular health at multiple timepoints from the diagnosis to 12 months after AKI. We used linear mixed-effect models to estimate biomarker changes over time, and used Cox proportional hazard regressions to determine their associations with a composite outcome of CKD incidence and progression. We compared the gene expression kinetics of biomarkers in murine models of repair and atrophy after ischemic reperfusion injury (IRI).

RESULTS: After 4.3 years, 106 and 52 participants developed incident CKD and CKD progression, respectively. Each standard deviation increases in the change of urine KIM-1, MCP-1 and plasma TNFR1 from baseline to 12 months was associated with 2-3-fold increased risk for CKD, while the increase in urine UMOD was associated with 40% reduced risk for CKD. The trajectories of these biological processes were associated with progression to kidney atrophy in mice after IRI.

CONCLUSION: Sustained tissue injury and inflammation, and slower restoration of tubular health are associated with higher risk of kidney disease progression. Further investigation into these ongoing biological processes may help understand and prevent the AKI-to-CKD transition.

FUNDING: NIH and NIDDK (grants U01DK082223, U01DK082185, U01DK082192, U01DK082183, R01DK098233, R01DK101507, R01DK114014, K23DK100468, R03DK111881, K01DK120783, and R01DK093771).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app