Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia.

ACS Nano 2023 April 12
The generation of temperature gradients on nanoparticles heated externally by a magnetic field is crucially important in magnetic hyperthermia therapy. But the intrinsic low heating power of magnetic nanoparticles, at the conditions allowed for human use, is a limitation that restricts the general implementation of the technique. A promising alternative is local intracellular hyperthermia, whereby cell death (by apoptosis, necroptosis, or other mechanisms) is attained by small amounts of heat generated at thermosensitive intracellular sites. However, the few experiments conducted on the temperature determination of magnetic nanoparticles have found temperature increments that are much higher than the theoretical predictions, thus supporting the local hyperthermia hypothesis. Reliable intracellular temperature measurements are needed to get an accurate picture and resolve the discrepancy. In this paper, we report the real-time variation of the local temperature on γ-Fe2 O3 magnetic nanoheaters using a Sm3+ /Eu3+ ratiometric luminescent thermometer located on its surface during exposure to an external alternating magnetic field. We measure maximum temperature increments of 8 °C on the surface of the nanoheaters without any appreciable temperature increase on the cell membrane. Even with magnetic fields whose frequency and intensity are still well within health safety limits, these local temperature increments are sufficient to produce a small but noticeable cell death, which is enhanced considerably as the magnetic field intensity is increased to the maximum level tolerated for human use, consequently demonstrating the feasibility of local hyperthermia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app