Add like
Add dislike
Add to saved papers

Computer-assisted analysis of functional internal rotation after reverse total shoulder arthroplasty: implications for component choice and orientation.

PURPOSE: Functional internal rotation (IR) is a combination of extension and IR. It is clinically often limited after reverse total shoulder arthroplasty (RTSA) either due to loss of extension or IR in extension. It was the purpose of this study to determine the ideal in-vitro combination of glenoid and humeral components to achieve impingement-free functional IR.

METHODS: RTSA components were virtually implanted into a normal scapula (previously established with a statistical shape model) and into a corresponding humerus using a computer planning program (CASPA). Baseline glenoid configuration consisted of a 28 mm baseplate placed flush with the posteroinferior glenoid rim, a baseplate inclination angle of 96° (relative to the supraspinatus fossa) and a 36 mm standard glenosphere. Baseline humeral configuration consisted of a 12 mm humeral stem, a metaphysis with a neck shaft angle (NSA) of 155° (+ 6 mm medial offset), anatomic torsion of -20° and a symmetric PE inlay (36mmx0mm). Additional configurations with different humeral torsion (-20°, + 10°), NSA (135°, 145°, 155°), baseplate position, diameter, lateralization and inclination were tested. Glenohumeral extension of 5, 10, 20, and 40° was performed first, followed by IR of 20, 40, and 60° with the arm in extension of 40°-the value previously identified as necessary for satisfactory clinical functional IR. The different component combinations were taken through simulated ROM and the impingement volume (mm3 ) was recorded. Furthermore, the occurrence of impingement was read out in 5° motion increments.

RESULTS: In all cases where impingement occurred, it occurred between the PE inlay and the posterior glenoid rim. Only in 11 of 36 combinations full functional IR was possible without impingement. Anterosuperior baseplate positioning showed the highest impingement volume with every combination of NSA and torsion. A posteroinferiorly positioned 26 mm baseplate resulting in an additional 2 mm of inferior overhang as well as 6 mm baseplate lateralization offered the best impingement-free functional IR (5/6 combinations without impingement). Low impingement potential resulted from a combination of NSA 135° and + 10° torsion (4/6 combinations without impingement), followed by NSA 135° and -20° torsion (3/6 combinations without impingement) regardless of glenoid setup.

CONCLUSION: The largest impingement-free functional IRs resulted from combining a posteroinferior baseplate position, a greater inferior glenosphere overhang, 90° of baseplate inclination angle, 6 mm glenosphere lateralization with respect to baseline setup, a lower NSA and antetorsion of the humeral component. Surgeons can employ and combine these implant configurations to achieve and improve functional IR when planning and performing RTSA.

LEVEL OF EVIDENCE: Basic Science Study, Biomechanics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app