Add like
Add dislike
Add to saved papers

Blood-brain barrier damage and new onset refractory status epilepticus: An exploratory study using dynamic contrast-enhanced magnetic resonance imaging.

Epilepsia 2023 March 10
OBJECTIVE: This study was undertaken to characterize the blood-brain barrier (BBB) dysfunction in patients with new onset refractory status epilepticus (NORSE) using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).

METHODS: This study included three groups of adult participants: patients with NORSE, encephalitis patients without status epilepticus (SE), and healthy subjects. These participants were retrospectively included from a prospective DCE-MRI database of neurocritically ill patients and healthy subjects. The BBB permeability (Ktrans) in the hippocampus, basal ganglia, thalamus, claustrum, periventricular white matter, and cerebellum were measured and compared between these three groups.

RESULTS: A total of seven patients with NORSE, 14 encephalitis patients without SE, and nine healthy subjects were included in this study. Among seven patients with NORSE, only one had a definite etiology (autoimmune encephalitis), and the rest were cryptogenic. Etiology of encephalitis patients without SE included viral (n = 2), bacterial (n = 8), tuberculous (n = 1), cryptococcal (n = 1), and cryptic (n = 2) encephalitis. Of these 14 encephalitis patients without SE, three patients had seizures. Compared to healthy controls, NORSE patients had significantly increased Ktrans values in the hippocampus (.73 vs. .02 × 10-3 /min, p = .001) and basal ganglia (.61 vs. .003 × 10-3 /min, p = .007) and a trend in the thalamus (.24 vs. .08 × 10-3 /min, p = .017). Compared to encephalitis patients without SE, NORSE patients had significantly increased Ktrans values in the thalamus (.24 vs. .01 × 10-3 /min, p = .002) and basal ganglia (.61 vs. .004 × 10-3 /min, p = .013).

SIGNIFICANCE: This exploratory study demonstrates that BBBs of NORSE patients were impaired diffusely, and BBB dysfunction in the basal ganglia and thalamus plays an important role in the pathophysiology of NORSE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app