Add like
Add dislike
Add to saved papers

Regenerative marine waste towards CaCO 3 nanoformulation for Alzheimer's therapy.

Alzheimer's disorder (AD) is associated with behavioural and cognitive destruction with due respect to the neurological degeneration. Conventional therapeutic approach for treatment of AD using neuroprotective drugs suffered certain limitations such as poor solubility, insufficient bioavailability, adverse side effects at higher dose and ineffective permeability on blood brain barrier (BBB). Development of nanomaterial based drug delivery system helped to overcome these barriers. Hence the present work focused on encapsulating neuroprotective drug citronellyl acetate within CaCO3 nanoparticles to develop neuroprotective CaCO3 nanoformulation (CA@CaCO3 ). CaCO3 was derived from marine conch shell waste, while the neuroprotective drug citronellyl acetate was scrutinized by in-silico high throughput screening. In-vitro findings revealed that CA@CaCO3 nanoformulation exhibited enhanced free radical scavenging activity of 92% (IC50 value - 29.27 ± 2.6 μg/ml), AChE inhibition of 95% (IC50 value - 25.6292 ± 1.5 μg/ml) at its maximum dose (100 μg/ml). CA@CaCO3 attenuated the aggregation of β-amyloid peptide (Aβ) and also disaggregated the preformed mature plaques the major risk factor for AD. Overall, the present study reveals that CaCO3 nanoformulations exhibits potent neuroprotective potential when compared to the CaCO3 nanoparticles alone and citronellyl acetate alone due to the sustained drug release and synergistic effect of CaCO3 nanoparticles and citronellyl acetate depicting the fact that CaCO3 can act as promising drug delivery system for treatment of neurodegenerative and CNS related disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app