Add like
Add dislike
Add to saved papers

A New Dissipation Function To Model The Rate-Dependent Mechanical Behaviour Of Semilunar Valve Leaflets.

A new dissipation function Wv is devised and presented to capture the rate-dependent mechanical behaviour of the semilunar heart valves. Following the experimentally-guided framework introduced in our previous work (J. Mech. Behav. Biomed. Mater. (2022), https://doi.org/10.1016/j.jmbbm.2022.105341), we derive our proposed Wv function from the experimental data pertaining to the biaxial deformation of the aortic and pulmonary valve specimens across a 10,000-fold range of deformation rate, exhibiting two distinct rate-dependent features: (i) the stiffening effect in s-? curves with increase in rate; and (ii) the asymptotic effect of rate on stress levels at higher rates. The devised Wv function is then used in conjunction with a hyperelastic strain energy function We to model the rate-dependent behaviour of the valves, incorporating the rate of deformation as an explicit variable. It is shown that the devised function favourably captures the observed rate-dependent features, and the model provides excellent fits to the experimentally obtained σ-λ curves. The proposed function is thereby recommended for application to the rate-dependent mechanical behaviour of heart valves, as well as other soft tissues that exhibit a similar rate-dependent behaviour.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app