Add like
Add dislike
Add to saved papers

Asiatic acid as a leading structure for derivatives combining sub-nanomolar cytotoxicity, high selectivity, and the ability to overcome drug resistance in human preclinical tumor models.

Amides and rhodamine B conjugates of different pentacyclic triterpene acids have been shown outstanding cytotoxicity for human tumor cells. Starting from asiatic acid, a new rhodamine B hybrid has been synthesized, and its cytotoxic activity was investigated employing several human tumor cell lines (A375 (melanoma), HT29 (colorectal carcinoma), MCF7 (breast adenocarcinoma), A2780 (ovarian carcinoma), HeLa (cervical carcinoma), (NIH 3T3 (non-malignant murine fibroblasts). For these conjugates of this kind it has been established that the spacer attached to the carboxyl group at ring E governs the magnitude of the cytotoxicity. These asiatic acid - rhodamine B conjugates were highly cytotoxic for human tumor cell lines but also selective. For example, 7, an acetylated homopiperazinyl spacered rhodamine B conjugate, held an EC50  = 0.8 nM for A2780 ovarian carcinoma cells. Additional staining experiments showed the rhodamine B conjugates to act as mitocans and to effect apoptosis. In further tests using 3D spheroid models of colorectal- and mamma carcinoma, 7 demonstrated activity in the lower nanomolar range and the ability to overcome resistance to clinically used standard chemotherapeutic drugs. Therefore 7 induces cytotoxic effects leading to an equal response in the chemotherapy of both sensitive and resistant tumor models. Analyses of mitochondrial function and glycolysis and respiration derived ATP production confirmed compound 7 to act as mitocan but also revealed a rapid perturbation of the cellular energy metabolism as the primary mechanism of action, which is completely different to conventional chemotherapeutic drugs and thereby explains the ability of compound 7 to overcome chemotherapeutic drug resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app