Add like
Add dislike
Add to saved papers

Ontogeny of the pollinium in Hoya carnosa provides new insights into microsporogenesis.

The presence of a pollinium is a distinct character in Apocynaceae which is important for phylogenetic analysis. The pollinium of Hoya has an outer sporopollenin wall and a pellucid margin which are adaptive features. However, their ontogeny and related evolutionary implications are not entirely understood. Therefore, a representative species Hoya carnosa was selected to investigate the pollinium development using light and electron microscopy and cytochemical tests. In contrast to the microsporogenesis in most angiosperms, which is associated with callose, the non-callosic intersporal walls in Hoya carnosa, together with the successive cytokinesis and linear form of the tetrad, represent an alternative pattern of microsporogenesis. This pattern has specific implication for the early stages of pollen morphogenesis. The absence of exine and apertures in the pollen grains in the pollinium could result from a combination of factors including the absence of callose in the early stages and the modifications in later developmental pathways, e.g., the sporopollenin accumulation pathway. The pollinium wall is an exine without stratification, its surface lacks sculptures, and it provides structural support and protection. The pollen tubes germinate through the pellucid margin and germinating ridge which are specialized features. The pellucid margin originates from aborted microspores. The germinating ridge that lies on the outer side of the pellucid margin develops in the same way as a classic pollen exine. The pollen grains are aggregated by intine fusion which is favorable for tube germination and growth. Comparing Asclepiadoideae with the other two subfamilies of Apocynaceae that develop a pollinium, the pollinium of Asclepiadoideae has reduced deposition of sporopollenin in the inner walls but an increase in the outer pollinium wall, thus making the inner walls more reduced and simplified, and the outer walls more solid. The adaptive characters of the pollen wall structure and the cohesion mechanism suggest that the pollinium of Hoya carnosa is a derived form of pollen aggregation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app