Add like
Add dislike
Add to saved papers

Population Pharmacokinetics of Vancomycin in Patients Receiving Hemodialysis in a Malian and a French Center and Simulation of the Optimal Loading Dose.

PURPOSE: Vancomycin dosing remains challenging in patients receiving intermittent hemodialysis, especially in developing countries, where access to therapeutic drug monitoring and model-based dose adjustment services is limited. The objectives of this study were to describe vancomycin population PK in patients receiving hemodialysis in a Malian and French center and examine the optimal loading dose of vancomycin in this setting.

METHODS: Population pharmacokinetic analysis was conducted using Pmetrics in 31 Malian and 27 French hemodialysis patients, having a total of 309 vancomycin plasma concentrations. Structural and covariate analyses were based on goodness-of-fit criteria. The final model was used to perform simulations of the vancomycin loading dose, targeting a daily area under the concentration-time curve (AUC) of 400-600 mg·h/L or trough concentration of 15-20 mg/L at 48 hours.

RESULTS: After 48 hours of therapy, 68% of Malian and 63% of French patients exhibited a daily AUC of <400. The final model was a 2-compartment model, with hemodialysis influencing vancomycin elimination and age influencing the vancomycin volume distribution. Younger Malian patients exhibited a lower distribution volume than French patients. Dosing simulation suggested that loading doses of 1500, 2000, and 2500 mg would be required to minimize underexposure in patients aged 30, 50, and 70 years, respectively.

CONCLUSIONS: In this study, a low AUC was frequently observed in hemodialysis patients in Mali and France after a standard vancomycin loading dose. A larger dose is necessary to achieve the currently recommended AUC target. However, the proposed dosing algorithm requires further clinical evaluation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app