Add like
Add dislike
Add to saved papers

Metabolic profile and molecular characterization of endophytic bacteria isolated from Pinus sylvestris L. with growth-promoting effect on sunflower.

Endophytic bacteria inhabit plant tissues such as roots, stems, leaves, fruits, and seeds and can multiply inside plant tissue without damaging them. This study involves the isolation, characterization, metabolic profiling, and effect of endophytic bacteria isolated from the roots of Scots pine (Pinus sylvestris), on the growth of sunflower. In the current study, fifteen isolates of endophytic bacteria were obtained from the roots of Scots pine, and their molecular characterization was performed using 16 s rRNA ribotyping. The molecular characterization revealed that the strains belonged to Bacillus spp., Pseudomonas spp., Micrococcus sp., Serratia sp., Enterobacter sp., Pantoea sp., Staphylococcus sp., and Microbacterium sp. Among the isolated strains, 9 strains showed positive results for ammonium production, 12 strains for calcium solubilization, 11 strains for magnesium solubilization, 5 strains for zinc solubilization, 12 strains for phosphate solubilization, 8 strains for potassium solubilization, 10 strains for indole acetic acid (IAA) production, 9 strains for siderophore, and 6 strains for hydrogen cyanide (HCN) production. The greenhouse experiment results demonstrated that all isolated endophytic bacteria improved the shoot length, dry weight, and chlorophyll content of sunflower, whereas a significant increase was observed by PS-3 (Bacillus cereus), PS-6 (Serratia marcescens), and PS-8 (Pseudomonas putida). Besides, the concentration of nitrogen, phosphorus, and potassium were also measured in sunflower shoots, and results asserted that bacterial inoculation increased the bioavailability of these essential nutrients to plants compared to uninoculated control. Thus, these endophytic bacteria could be used as an encouraging option to improve plant growth and performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app