Add like
Add dislike
Add to saved papers

A novel eye-movement impairment in multiple sclerosis indicating widespread cortical damage.

Brain 2023 June 2
In multiple sclerosis, remyelination trials have yet to deliver success like that achieved for relapse rates with disease course modifying treatment trials. The challenge is to have a clinical, functional outcome measure. Currently, there are none that have been validated, other than visual evoked potentials in optic neuritis. Like vision, quick eye movements (saccades) are heavily dependent on myelination. We proposed that it is possible to extrapolate from demyelination of the medial longitudinal fasciculus in the brainstem to quantitative assessment of cortical networks governing saccadic eye movements in multiple sclerosis. We have developed and validated a double-step saccadic test, which consists of a pair of eye movements towards two stimuli presented in quick succession (the demonstrate eye movement networks with saccades protocol). In this single-centre, cross-sectional cohort study we interrogated the structural and functional relationships of double-step saccades in multiple sclerosis. Data were collected for double-step saccades, cognitive function (extended Rao's Brief Repeatable Battery), disability (Expanded Disability Status Scale) and visual functioning in daily life (National Eye Institute Visual Function Questionnaire). MRI was used to quantify grey matter atrophy and multiple sclerosis lesion load. Multivariable linear regression models were used for analysis of the relationships between double-step saccades and clinical and MRI metrics. We included 209 individuals with multiple sclerosis (mean age 54.3 ± 10.5 years, 58% female, 63% relapsing-remitting multiple sclerosis) and 60 healthy control subjects (mean age 52.1 ± 9.2 years, 53% female). The proportion of correct double-step saccades was significantly reduced in multiple sclerosis (mean 0.29 ± 0.22) compared to controls (0.45 ± 0.22, P < 0.001). Consistent with this, there was a significantly larger double-step dysmetric saccadic error in multiple sclerosis (mean vertical error -1.18 ± 1.20°) compared to controls (-0.54 ± 0.86°, P < 0.001). Impaired double-step saccadic metrics were consistently associated with more severe global and local grey matter atrophy (correct responses-cortical grey matter: β = 0.42, P < 0.001), lesion load (vertical error: β = -0.28, P < 0.001), progressive phenotypes, more severe physical and cognitive impairment (correct responses-information processing: β = 0.46, P < 0.001) and visual functioning. In conclusion, double-step saccades represent a robust metric that revealed a novel eye-movement impairment in individuals with multiple sclerosis. Double-step saccades outperformed other saccadic tasks in their statistical relationship with clinical, cognitive and visual functioning, as well as global and local grey matter atrophy. Double-step saccades should be evaluated longitudinally and tested as a potential novel outcome measure for remyelination trials in multiple sclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app