Add like
Add dislike
Add to saved papers

CALR-mutated cells are vulnerable to combined inhibition of the proteasome and the endoplasmic reticulum stress response.

Leukemia 2022 December 7
Cancer is driven by somatic mutations that provide a fitness advantage. While targeted therapies often focus on the mutated gene or its direct downstream effectors, imbalances brought on by cell-state alterations may also confer unique vulnerabilities. In myeloproliferative neoplasms (MPN), somatic mutations in the calreticulin (CALR) gene are disease-initiating through aberrant binding of mutant CALR to the thrombopoietin receptor MPL and ligand-independent activation of JAK-STAT signaling. Despite these mechanistic insights into the pathogenesis of CALR-mutant MPN, there are currently no mutant CALR-selective therapies available. Here, we identified differential upregulation of unfolded proteins, the proteasome and the ER stress response in CALR-mutant hematopoietic stem cells (HSCs) and megakaryocyte progenitors. We further found that combined pharmacological inhibition of the proteasome and IRE1-XBP1 axis of the ER stress response preferentially targets Calr-mutated HSCs and megakaryocytic-lineage cells over wild-type cells in vivo, resulting in an amelioration of the MPN phenotype. In serial transplantation assays following combined proteasome/IRE1 inhibition for six weeks, we did not find preferential depletion of Calr-mutant long-term HSCs. Together, these findings leverage altered proteostasis in Calr-mutant MPN to identify combinatorial dependencies that may be targeted for therapeutic benefit and suggest that eradicating disease-propagating Calr-mutant LT-HSCs may require more sustained treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app