Add like
Add dislike
Add to saved papers

Unravelling the Differential Host Immuno-Inflammatory Responses to Staphylococcus aureus and Escherichia coli Infections in Sepsis.

Vaccines 2022 October 2
Previous reports from our lab have documented dysregulated host inflammatory reactions in response to bacterial infections in sepsis. Both Gram-negative bacteria (GNB) and Gram-positive bacteria (GPB) play a significant role in the development and progression of sepsis by releasing several virulence factors. During sepsis, host cells produce a range of inflammatory responses including inducible nitric oxide synthase (iNOS) expression, nitrite generation, neutrophil extracellular traps (NETs) release, and pro-inflammatory cytokines production. The current study was conducted to discern the differences in host inflammatory reactions in response to both Escherichia coli and Staphylococcus aureus along with the organ dysfunction parameters in patients of sepsis. We examined 60 ICU sepsis patients identified based on the Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA II) scores. Pathogen identification was carried out using culture-based methods and gene-specific primers by real-time polymerase chain reaction (RT-PCR). Samples of blood from healthy volunteers were spiked with E. coli (GNB) and S. aureus (GPB). The incidence of NETs formation, iNOS expression, total nitrite content, and pro-inflammatory cytokine level was estimated. Prevalence of E. coli , A. baumannii (both GNB), S. aureus , and Enterococcus faecalis (both GPB) was found in sepsis patients. Augmented levels of inflammatory mediators including iNOS expression, total nitrite, the incidence of NETs, and proinflammatory cytokines, during spiking, were found in response to S. aureus infections in comparison with E. coli infections. These inflammatory mediators were found to be positively correlated with organ dysfunction in both GN and GP infections in sepsis patients. Augmented host inflammatory response was generated in S. aureus infections as compared with E. coli .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app