Add like
Add dislike
Add to saved papers

HDAC1 regulates the chromatin landscape to control transcriptional dependencies in chronic lymphocytic leukemia.

Blood Advances 2022 October 27
Chronic lymphocytic leukemia (CLL) is a quiescent B-cell malignancy that depends on transcriptional dysregulation for survival. The histone deacetylases are transcriptional regulators whose role within the regulatory chromatin and consequence on the CLL transcriptome is poorly characterized. Here, we profiled and integrated the genome wide occupancy of HDAC1, BRD4, H3K27Ac and H3K9Ac signals with chromatin accessibility, Pol2 occupancy and target expression signatures in CLL cells. We identified that when HDAC1 was recruited within super-enhancers marked by acetylated H3K27 and BRD4, it functioned as a transcriptional activator that drove the de novo expression of select genes to facilitate survival and progression in CLL. Targeting HDACs reduced BRD4 and Pol2 engagement to downregulate the transcript and proteins levels of specific oncogenic driver genes in CLL such as BLK, a key mediator of the B-cell receptor pathway, core transcription factors such as PAX5 and IKZF3 and the anti-apoptotic gene, BCL2. Concurrently, HDAC1, when recruited in the absence of super-enhancers repressed target gene expression. HDAC inhibition reversed silencing of a defined set of protein coding and noncoding RNA genes. We focused on a specific set of microRNA genes and show that their upregulation was inversely correlated with the expression of CLL specific survival, transcription factor and signaling genes. Our findings identify that the transcriptional activator and repressor functions of HDACs cooperate within the same tumor to establish the transcriptional dependencies essential for survival in CLL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app