Add like
Add dislike
Add to saved papers

Gate-Tunable Anomalous Hall Effect in Stacked van der Waals Ferromagnetic Insulator-Topological Insulator Heterostructures.

Nano Letters 2022 October 11
The search of novel topological states, such as the quantum anomalous Hall insulator and chiral Majorana fermions, has motivated different schemes to introduce magnetism into topological insulators. A promising scheme is using the magnetic proximity effect (MPE), where a ferromagnetic insulator magnetizes the topological insulator. Most of these heterostructures are synthesized by growth techniques which prevent mixing many of the available ferromagnetic and topological insulators due to difference in growth conditions. Here, we demonstrate that MPE can be obtained in heterostructures stacked via the dry transfer of flakes of van der Waals ferromagnetic and topological insulators (Cr2 Ge2 Te6 /BiSbTeSe2 ), as evidenced in the observation of an anomalous Hall effect (AHE). Furthermore, devices made from these heterostructures allow modulation of the AHE when controlling the carrier density via electrostatic gating. These results show that simple mechanical transfer of magnetic van der Waals materials provides another possible avenue to magnetize topological insulators by MPE.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app