Add like
Add dislike
Add to saved papers

IKZF3 amplification frequently occurs in HER2-positive breast cancer and is a potential therapeutic target.

Medical Oncology 2022 September 31
Breast cancer is one of the leading causes of cancer death in women, and although treatment outcome has substantially improved in the past decades, advanced or metastatic breast cancers still carry a poor prognosis. Gene amplification is one of the frequent genetic alterations in cancer, and oncogene amplification may be associated with cancer aggressiveness and oncogenicity. Targeting amplified genes such as HER2 has vastly improved disease outcome and survival, and anti-HER2 therapeutics have revolutionized the standard of care in HER2 breast cancer. Besides currently known druggable gene amplifications including ERBB2 and FGFR2, other frequently amplified genes are relatively less well known for function and clinical significance. By querying four large databases from TCGA and AACR-Genie, from a total of 11,890 patients with invasive ductal breast carcinoma, we discover IKZF3, CCND1, ERBB2 to be consistently amplified across different cohorts. We further identify IKZF3 as a frequently amplified gene in breast cancer with a prevalence of 12-15% amplification rate. Interestingly, IKZF3 amplification is frequently co-amplified with ERBB2/HER2, and is also associated with worse prognosis compared to IKZF3 non-amplified cancers. Analysis of HER2 breast cancer patients treated with trastuzumab revealed decrease in both ERBB2/HER2 and IKZF3 expression. Further investigation using the DepMap for gene dependency by genome-wide CRISPR screening revealed dependence on IKZF3 in HER2 breast cancer cell lines. Our study utilized an integrative analysis of large-scale patient genomics, transcriptomics and clinical data to reveal IKZF3 as a frequently amplified gene, and suggest a potential role of IKZF3 as a druggable target for HER2 breast cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app