Journal Article
Review
Add like
Add dislike
Add to saved papers

Intraflagellar transport 20 cilia-dependent and cilia-independent signaling pathways in cell development and tissue homeostasis.

Intraflagellar transport (IFT) is an essential condition for ciliogenesis. The primary cilia protrude like antennae and act as chemical or mechanical sensory organelles that coordinate specific receptor localization and signal transduction. IFT20 is the smallest molecule in IFT complex B, which is located in both the cilia and the Golgi complex. Recent studies have shown that IFT20 is a key molecule in multiple signaling pathways. Importantly, in the function of IFT20, signal transduction is not restricted to cilia, but is also involved in non-ciliary functions. Here we summarize current knowledge regarding IFT20-mediated signaling pathways and their relationship with cell development and tissue homeostasis, and analyse the cilia-dependent and cilia-independent mechanisms of IFT20 coordinated signaling pathways and potential crosstalk between the mechanisms. This review provides a comprehensive perspective on IFT20 coordinates signaling mechanisms in cell development and tissue homeostasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app