Add like
Add dislike
Add to saved papers

Apolipoprotein A5 ameliorates MCT induced pulmonary hypertension by inhibiting ER stress in a GRP78 dependent mechanism.

BACKGROUND: Pulmonary arterial hypertension (PAH) is a chronic, progressive lung vascular disease accompanied by elevated pulmonary vascular pressure and resistance, and it is characterized by increased pulmonary artery smooth muscle cell (PASMC) proliferation. Apolipoprotein A5 (ApoA5) improves monocrotaline (MCT)-induced PAH and right heart failure; however, the underlying mechanism remains unknown. Here we speculate that ApoA5 has a protective effect in pulmonary vessels and aim to evaluate the mechanism.

METHODS: ApoA5 is overexpressed in an MCT-induced PAH animal model and platelet-derived growth factor (PDGF)-BB-induced proliferating PASMCs. Lung vasculature remodeling was measured by immunostaining, and PASMC proliferation was determined by cell counting kit-8 and 5-ethynyl-2'-deoxyuridine5-ethynyl-2'-deoxyuridine incorporation assays. Coimmunoprecipitation-mass spectrometry was used to investigate the probable mechanism. Next, its role and mechanism were further verified by knockdown studies.

RESULTS: ApoA5 level was decreased in MCT-induced PAH lung as well as PASMCs. Overexpression of ApoA5 could help to inhibit the remodeling of pulmonary artery smooth muscle. ApoA5 could inhibit PDGF-BB-induced PASMC proliferation and endoplasmic reticulum stress by increasing the expression of glucose-regulated protein 78 (GRP78). After knocking down GRP78, the protecting effects of ApoA5 have been blocked.

CONCLUSION: ApoA5 ameliorates MCT-induced PAH by inhibiting endoplasmic reticulum stress in a GRP78 dependent mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app