Add like
Add dislike
Add to saved papers

Polysaccharide-based nano-delivery systems for encapsulation, delivery, and pH-responsive release of bioactive ingredients.

Polysaccharides are natural polymers isolated from plants, microorganisms, algae, and some animals they are composed of aldoses or ketoses linked by glycosidic bonds. Due to the affordability, abundance, safety, and functionality, polysaccharides are widely used in the foods and medicines to construct oral delivery systems for sensitive bioactive ingredients. In this article, the characteristics and applications of nanoscale polysaccharide-based delivery carriers are reviewed, including their ability to encapsulate, protect, and deliver bioactive ingredients. This review discusses the sources, characteristics, and functional properties of common food polysaccharides, including starch, pectin, chitosan, xanthan gum, and alginate. It also highlights the potential advantages of using polysaccharides for the construction of nano-delivery systems, such as nanoparticles, nanogels, nanoemulsions, nanocapsules, and nanofibers. Moreover, the application of delivery systems assembled from polysaccharides is summarized, with a focus on pH-responsive delivery of bioactives. There are some key findings and conclusions: Nanoscale polysaccharide delivery systems provide several advantages, including improved water-dispersibility, flavor masking, stability enhancement, reduced volatility, and controlled release; Polysaccharide nanocarriers can be used to construct pH-responsive delivery vehicles to achieve intestinal-targeted delivery and controlled release of bioactive ingredients; Polysaccharides can be used in combination with other biopolymers to form composite delivery systems with enhanced functional attributes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app