Add like
Add dislike
Add to saved papers

Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity.

The widespread of bacterial infections including biofilms drives the never-ending quest for new antimicrobial agents. Among the great variety of nanomaterials, carbon dots (CDs) are the most promising antibacterial material, but still require the adjustment of their surface properties for enhanced activity. In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria. CDs were modified by novel diazonium salts bearing tetraalkylammonium moieties (TAA) with different alkyl chains (C2, C4, C9, C12) for the optimization of antibacterial activity. Variation of the alkyl chain allows to reach the significant antibacterial effect for CDs-C9 towards Gram-positive Staphylococcus aureus (S. aureus) (MIC = 3.09 ± 1.10 μg mL-1 ) and Gram-negative Escherichia coli (E. coli) (MIC = 7.93 ± 0.17 μg mL-1 ) bacteria. The antibacterial mechanism of CDs-C9 is ascribed to the balance between the positive charge and hydrophobicity of the alkyl chains. TAA moieties are responsible for enhanced adherence on the bacterial cell membrane, its penetration and disturbance of physiological metabolism. CDs-C9 were not effective in the generation of reactive oxygen species excluding the oxidative damage mechanism. In addition, CDs-C9 effectively promoted the antibiofilm treatment of S. aureus and E. coli biofilms outperforming previously-reported CDs in terms of treatment duration and minimal inhibitory concentration. The good biocompatibility of CDs-C9 was demonstrated on mouse fibroblast (NIH/3T3), HeLa and U-87 MG cell lines for concentrations up to 256 μg mL-1 . Collectively, our work highlights the correlation between the surface chemistry of CDs and their antimicrobial performance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app