Add like
Add dislike
Add to saved papers

Clustering extent-dependent differential signaling by CLEC-2 receptors in platelets.

Background: C-type lectin receptor family members play a role in many cells including platelets, where they are crucial in the separation of lymphatic and blood vessels during development. The C-type lectin-like receptor 2 (CLEC-2) receptor contains the canonical intracellular hemITAM motif through which it signals to activate Syk.

Objectives: One proposed hypothesis for signaling cascade is that Syk bridges two receptors through phosphorylated hemITAM motifs. We demonstrated that the phosphorylated hemITAM stimulates PI3 kinase/Btk pathways to activate Syk. To address this controversy, we used a CLEC-2 selective agonist and studied the role of Btk in platelet activation.

Results and Conclusions: Platelet activation and downstream signaling were abolished in murine and human platelets in the presence of the Btk inhibitors ibrutinib or acalabrutinib when a low concentration of a CLEC-2 antibody was used to crosslink CLEC-2 receptors. This inhibition was overcome by increasing concentrations of the CLEC-2 antibody. Similar results were obtained in X-linked immunodeficient mouse platelets, with an inactivating mutation in Btk or in Lyn null platelets. We conclude that at low crosslinking conditions of CLEC-2, Btk plays an important role in the activation of Syk, but at higher crosslinking conditions their role becomes less important and other mechanisms take over to activate Syk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app