Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Plantar pressure profile during walking is associated with talar cartilage characteristics in individuals with chronic ankle instability.

BACKGROUND: Individuals with chronic ankle instability typically present with abnormal gait patterns favoring the lateral foot. This gait pattern may alter cartilage stress potentially increasing the risk of osteoarthritis development, thus exploring this relationship may provide insights for early interventions. The purpose of this study was to examine the relationship gait biomechanics and talar articular cartilage characteristics.

METHODS: Talar articular cartilage was assessed with ultrasound at rest and after walking for 30-min in twenty-five adults (14 females, 22.6 ± 3.12 years, 168.12 ± 9.83 cm, 76.00 ± 15.47 kg) with chronic ankle instability. Cartilage was segmented into Total, Medial, and Lateral regions. During the 30-min walking period, plantar pressure of the entire foot was recorded every 5-min and condensed to create a biomechanical loading pattern and center of pressure gait line. Relationships between resting cartilage thickness and echo intensity, changes in thickness and echo intensity, and plantar pressure profiles were assessed with correlation coefficients.

FINDINGS: There was a significant relationship between plantar pressure in the lateral forefoot and medial talar cartilage deformation (r = 0.408, p < .05). Early stance center of pressure was correlated with deformation in the total (r = 0.439-0.524) and lateral (r = 0.443-0.550) regions (p < .05). There were no significant correlations between echo intensity and biomechanics.

INTERPRETATION: This study contributes to the growing evidence that talar cartilage strain patterns are associated with biomechanics during walking. Further validation is needed to determine a causal relationship between biomechanics and ultrasound cartilage characteristics after ankle sprains. In addition, research should continue determining the utility of ultrasound to monitor joint health after musculoskeletal injuries.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app