Add like
Add dislike
Add to saved papers

Raman spectroscopy and sciatic functional index (SFI) after low-level laser therapy (LLLT) in a rat sciatic nerve crush injury model.

Axonotmesis causes sensorimotor and neurofunctional deficits, and its regeneration can occur slowly or not occur if not treated appropriately. Low-level laser therapy (LLLT) promotes nerve regeneration with the proliferation of myelinating Schwann cells to recover the myelin sheath and the production of glycoproteins for endoneurium reconstruction. This study aimed to evaluate the effects of LLLT on sciatic nerve regeneration after compression injury by means of the sciatic functional index (SFI) and Raman spectroscopy (RS). For this, 64 Wistar rats were divided into two groups according to the length of treatment: 14 days (n = 32) and 21 days (n = 32). These two groups were subdivided into four sub-groups of eight animals each (control 1; control 2; laser 660 nm; laser 808 nm). All animals had surgical exposure to the sciatic nerve, and only control 1 did not suffer nerve damage. To cause the lesion in the sciatic nerve, compression was applied with a Kelly clamp for 6 s. The evaluation of sensory deficit was performed by the painful exteroceptive sensitivity (PES) and neuromotor tests by the SFI. Laser 660 nm and laser 808 nm sub-groups were irradiated daily (100 mW, 40 s, energy density of 133 J/cm2 ). The sciatic nerve segment was removed for RS analysis. The animals showed accentuated sensory and neurofunctional deficit after injury and their rehabilitation occurred more effectively in the sub-groups treated with 660 nm laser. Control 2 sub-group did not obtain functional recovery of gait. The RS identified sphingolipids (718, 1065, and 1440 cm-1 ) and collagen (700, 852, 1004, 1270, and 1660 cm-1 ) as biomolecular characteristics of sciatic nerves. Principal component analysis revealed important differences among sub-groups and a directly proportional correlation with SFI, mainly in the sub-group laser 660 nm treated for 21 days. In the axonotmesis-type lesion model presented herein, the 660 nm laser was more efficient in neurofunctional recovery, and the Raman spectra of lipid and protein properties were attributed to the basic biochemical composition of the sciatic nerve.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app