Add like
Add dislike
Add to saved papers

Role of Majorana fermions in high-harmonic generation from Kitaev chain.

Scientific Reports 2022 April 26
The observation of Majorana fermions as collective excitations in condensed-matter systems is an ongoing quest, and several state-of-the-art experiments have been performed in the last decade. As a potential avenue in this direction, we simulate the high-harmonic spectrum of Kitaev's superconducting chain model that hosts Majorana edge modes in its topological phase. It is well-known that this system exhibits a topological-trivial superconducting phase transition. We demonstrate that high-harmonic spectroscopy is sensitive to the phase transition in presence of open boundary conditions due to the presence or absence of these edge modes. The population dynamics of the Majorana edge modes are different from the bulk modes, which is the underlying reason for the distinct harmonic profile of both the phases. On the contrary, in presence of periodic boundary conditions with only bulk modes, high-harmonic spectroscopy becomes insensitive to the phase transition with similar harmonic profiles in both phases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app