Add like
Add dislike
Add to saved papers

Therapeutic Treatment Plan Optimization during the COVID-19 Pandemic: A Comprehensive Physicochemical Compatibility Study of Intensive Care Units Selected Drugs.

Pharmaceutics 2022 Februrary 29
BACKGROUND: The SARS-CoV-2 pandemic has resulted in a dramatic rise of the demand for medical devices and drugs. In this context, an important shortage of programmable syringe pumps, used to administrate different drugs in intensive care units, was seen. The opportunity of administrating combinations of five intensive care units selected drugs (Sufentanil, Clonidine, Loxapine, Midazolam, and Ketamine) was considered.

METHODS: The drug mixtures were studied in a pure form or diluted in NaCl 0.9% or G5%. Twenty-six possible combinations of the five drugs were produced in glass vials or polypropylene syringes and stored at 25 °C for 14 days. The LC method was implemented to study drugs combinations in the presence of the degradation products. The clearness and pH were also monitored.

RESULTS: All the 26 possible combinations displayed adequate physicochemical stability at 25 °C: at least 3 days and 7 days, respectively, for the dilution in 0.9% NaCl or glucose 5%, and the pure drug products mixtures.

CONCLUSIONS: The study provided sufficient stability results, covering the medication administration period of at least three days. The combination of more than two drugs offers the advantage of minimizing the individual doses and reduces unwanted side-effects. Hence, this study opens up the possibility of combining the five drugs in one single syringe, which is useful especially under the current circumstances associated with an important shortage of programmable syringe pumps and pharmaceuticals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app