Journal Article
Review
Add like
Add dislike
Add to saved papers

miRNAs in Cardiac Myxoma: New Pathologic Findings for Potential Therapeutic Opportunities.

MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level, contributing to all major cellular processes. The importance of miRNAs in cardiac development, heart function, and valvular heart disease has been shown in recent years, and aberrant expression of miRNA has been reported in various malignancies, such as gastric cancer and breast cancer. Different from other fields of investigation, the role of miRNAs in cardiac tumors still remains difficult to interpret due to the scarcity publications and a lack of narrative focus on this topic. In this article, we summarize the available evidence on miRNAs and cardiac myxomas and propose new pathways for future research. miRNAs play a part in modifying the expression of cardiac transcription factors (miR-335-5p), increasing cell cycle trigger factors (miR-126-3p), interfering with ceramide synthesis (miR-320a), inducing apoptosis (miR-634 and miR-122), suppressing production of interleukins (miR-217), and reducing cell proliferation (miR-218). As such, they have complex and interconnected roles. At present, the study of the complete mechanistic control of miRNA remains a crucial issue, as proper understanding of signaling pathways is essential for the forecasting of therapeutic implications. Other types of cardiac tumors still lack adequate investigation with regard to miRNA. Further research should aim at investigating the causal relationship between different miRNAs and cell overgrowth, considering both myxoma and other histological types of cardiac tumors. We hope that this review will help in understanding this fascinating molecular approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app