English Abstract
Journal Article
Add like
Add dislike
Add to saved papers

[Capacity of the oleaginous yeast Clavispora lusitaniae Hi2 to transform agroindustrial residues into lipids].

BACKGROUND: Single-cell oils obtained from oleaginous microorganisms by using lignocellulosic waste hydrolysates are an alternative for producing biodiesel.

AIMS: To isolate a yeast strain able to produce lipids from centrifuged nejayote (CN), hydrolyzed nejayote solids (HNS) and hydrolyzed sugarcane bagasse (HSB).

METHODS: In order to identify the yeasts recovered, 26S ribosomal DNA was sequenced. The metabolic profile was assessed by using API20C AUX strips. The nutritional characterization of CN, HNS and HSB was performed by quantifying reducing sugars, total carbohydrates, starch, protein and total nitrogen. The biomass and lipid production ability were evaluated by performing growth kinetics of Clavispora lusitaniae Hi2 in combined culture media.

RESULTS: Six oleaginous yeast strains were isolated and identified, selecting C. lusitaniae Hi2 to study its lipids production by using nejayote. The C. lusitaniae Hi2 strain can use glucose, xylose, arabinose, galactose and cellobiose as carbon sources. Cultures of C. lusitaniae Hi2 presented the best biomass (5.6±0.28 g/L) and lipid production (0.99±0.09 g/L) at 20 h of incubation with the CN:HNS media in the 25:75 and 50:50 ratios, respectively.

CONCLUSIONS: The use of CN, HNS and HSB for the growth of C. lusitaniae Hi2 is an option to take advantage of these agro-industrial residues and generate compounds of biotechnological interest.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app