Add like
Add dislike
Add to saved papers

High feature overlap reveals the importance of anterior and medial temporal lobe structures for learning by means of fast mapping.

Contrary to traditional theories of declarative memory, it has recently been shown that novel, arbitrary associations can rapidly and directly be integrated into cortical memory networks by means of a learning procedure called fast mapping (FM), possibly bypassing time-consuming hippocampal-neocortical consolidation processes. In the typical FM paradigm, a picture of a previously unknown item is presented next to a picture of a previously known item and participants answer a question referring to an unfamiliar label, thereby incidentally creating associations between the unknown item and the label. However, contradictory findings have been reported and factors moderating rapid cortical integration through FM yet need to be identified. Previous behavioral results showed that rapid semantic integration through FM was boosted if the unknown and the known item shared many features. In light of this, we propose that the perirhinal cortex might be especially qualified to support the rapid incorporation of these associations into cortical memory networks within the FM paradigm, due to its computational mechanisms during the processing of complex and particularly highly similar objects. We therefore expected that a high degree of feature overlap between the unknown and the known item would trigger strong engagement of the perirhinal cortex at encoding, which in turn might enhance rapid cortical integration of the novel picture-label associations. Within an fMRI experiment, we observed greater subsequent memory effects (i.e., stronger activation for subsequent hits than misses) during encoding in the perirhinal cortex and an associated anterior temporal network if the items shared many features than if they shared few features. This indicates that the perirhinal cortex indeed contributes to the acquisition of novel associations by means of FM if feature overlap is high.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app