Add like
Add dislike
Add to saved papers

Cycling between growth and production phases increases cyanobacteria bioproduction of lactate.

Metabolic Engineering 2021 September 31
Decoupling growth from product synthesis is a promising strategy to increase carbon partitioning and maximize productivity in cell factories. However, reduction in both substrate uptake rate and metabolic activity in the production phase are an underlying problem for upscaling. Here, we used CRISPR interference to repress growth in lactate-producing Synechocystis sp. PCC 6803. Carbon partitioning to lactate in the production phase exceeded 90%, but CO2 uptake was severely reduced compared to uptake during the growth phase. We characterized strains during the onset of growth arrest using transcriptomics and proteomics. Multiple genes involved in ATP homeostasis were regulated once growth was inhibited, which suggests an alteration of energy charge that may lead to reduced substrate uptake. In order to overcome the reduced metabolic activity and take advantage of increased carbon partitioning, we tested a novel production strategy that involved alternating growth arrest and recovery by periodic addition of an inducer molecule to activate CRISPRi. Using this strategy, we maintained lactate biosynthesis in Synechocystis for 30 days in a constant light turbidostat cultivation. Cumulative lactate titers were also increased by 100% compared to a constant growth-arrest regime, and reached 1 g/L. Further, the cultivation produced lactate for 30 days, compared to 20 days for the non-growth arrest cultivation. Periodic growth arrest could be applicable for other products, and in cyanobacteria, could be linked to internal circadian rhythms that persist in constant light.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app