Add like
Add dislike
Add to saved papers

Prediction of Sarcopenia Using Multiple Biomarkers of Neuromuscular Junction Degeneration in Chronic Obstructive Pulmonary Disease.

Patients with chronic obstructive pulmonary disease (COPD) present with an advanced form of age-related muscle loss or sarcopenia. Among multiple pathomechanisms of sarcopenia, neuromuscular junction (NMJ) degradation may be of primary relevance. We evaluated the circulating biomarkers of NMJ degradation, including c-terminal agrin fragment -22 (CAF22), brain-derived neurotrophic factor (BDNF), and glial cell line-derived neurotrophic factor (GDNF) as predictors of sarcopenia in COPD during pulmonary rehabilitation (PR). Male, 61-77-year-old healthy controls and patients of COPD ( n = 77-84/group) were recruited for measurements of circulating CAF22, BDNF, and GDNF levels. Functional assessment and measurements of plasma biomarkers were performed at diagnosis and following six months of PR. CAF22 levels were elevated while BDNF and GDNF levels were reduced in COPD patients at diagnosis, which were incompletely restored to normal levels following PR. These biomarkers showed varying degrees of associations with indexes of sarcopenia and functional recovery during PR. Logistic regression revealed that the combined use of three biomarkers enhanced the diagnostic accuracy of sarcopenia better than single biomarkers. Altogether, measurements of plasma CAF22, BDNF, and GDNF may be helpful for the accurate diagnosis of sarcopenia and functional capacity in COPD during PR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app