Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Aromatase and nonaromatase neurons in the zebra finch secondary auditory forebrain are indistinct in their song-driven gene induction and intrinsic electrophysiological properties.

Estrogens support major brain functions including cognition, reproduction, neuroprotection and sensory processing. Neuroestrogens are synthesized within some brain areas by the enzyme aromatase and can rapidly modulate local circuit functions, yet the cellular physiology and sensory-response profiles of aromatase neurons are essentially unknown. In songbirds, social and acoustic stimuli drive neuroestrogen elevations in the auditory forebrain caudomedial nidopallium (NCM). In both males and females, neuroestrogens rapidly enhance NCM auditory processing and auditory learning. Estrogen-producing neurons in NCM may therefore exhibit distinguishing profiles for sensory-activation and intrinsic electrophysiology. Here, we explored these questions using both immunocyctochemistry and electrophysiological recordings. Immunoreactivity for aromatase and the immediate early gene EGR1, a marker of activity and plasticity, were quantified in NCM of song-exposed animals versus silence-exposed controls. Using whole-cell patch clamp recordings from NCM slices, we also documented the intrinsic excitability profiles of aromatase-positive and aromatase-negative neurons. We observed that a subset of aromatase neurons were significantly activated during song playback, in both males and females, and in both hemispheres. A comparable population of non-aromatase-expressing neurons were also similarly driven by song stimulation. Membrane properties (i.e., resting membrane potential, rheobase, input resistance and multiple action potential parameters) were similarly indistinguishable between NCM aromatase and non-aromatase neurons. Together, these findings demonstrate that aromatase and non-aromatase neurons in NCM are indistinct in terms of their intrinsic electrophysiology and responses to song. Nevertheless, such similarities in response properties may belie more subtle differences in underlying conductances and/or computational roles that may be crucial to their function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app